# **KBOC BASEBOARD#1 USER INFORMATION**

KBOC\_BB1\_USER.PDF KwikByte, LLC

Version 1.0



#### **Revision Information**

| Revision | Date      | Description      |
|----------|-----------|------------------|
| 1.0      | 5/15/2009 | Initial creation |
|          |           |                  |
|          |           |                  |
|          |           |                  |

## **DISCLAIMER**

The KBOC\_BB1 is an evaluation board intended for use in engineering development or demonstration and is not considered a final, end-item production unit. The device generates and uses radio frequency energy and has not been tested for compliance with FCC rules part 15. Use and operation of this device may cause radio interference – in which case the user must take corrective action at his own expense. In most cases, this simply involves discontinuing use of the device in that particular environment. Manufacturer is under no obligation to continue to produce this equipment for any length of time. This product is not intended for use in life-sustaining or life-critical systems. This product is not intended for use in nuclear devices. Appropriate ESD handling precautions must be taken when handling the device.



# 1 Introduction

The KBOC BASEBOARD#1 is intended for use as a hardware interface to the OMAP35xx-based KBOC System Module. This document provides important information about the KBOC BASEBOARD#1 ("KBOC\_BB1") including physical dimensions, connector location and pin-out, and peripheral signal routing.

# 1.1 Physical Details

The figure below shows the KBOC\_BB1 physical dimensions (7.00" x 4.50") and connector placement.

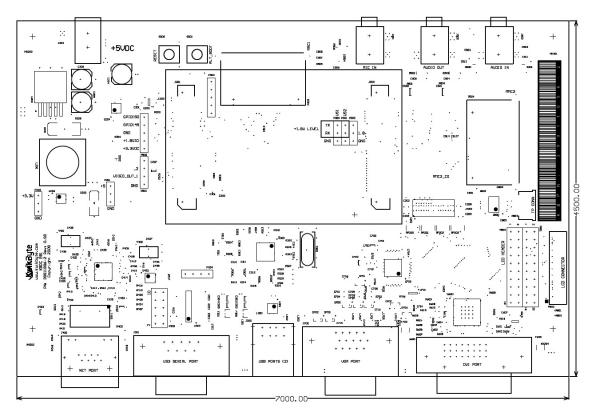



Figure 1-1: KBOC\_BB1 DIMENSIONS

The figures below depict 3D images of the board viewed from top and connector edges. Note: some components shown are populated depending on configuration and may not be installed on a specific board.



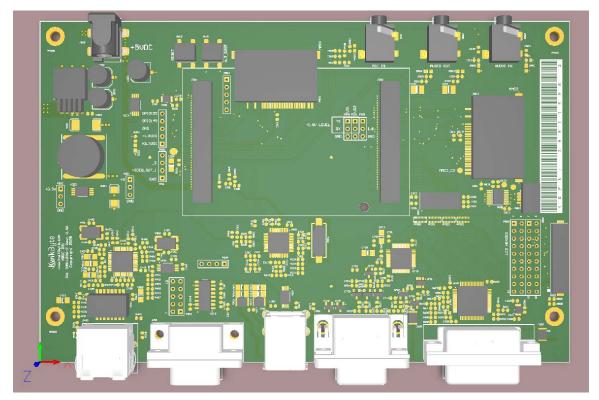



Figure 1-2: KBOC\_BB1 3D VIEW FROM TOP

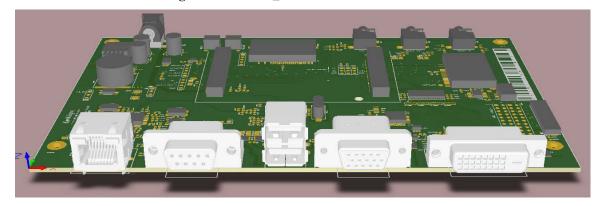



Figure 1-3: KBOC\_BB1 3D VIEW FROM FRONT

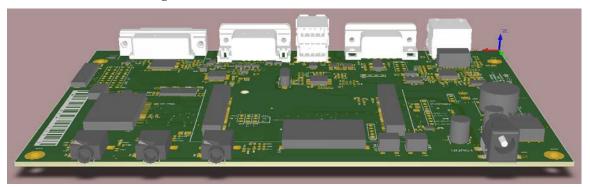



Figure 1-4: KBOC\_BB1 3D VIEW FROM BACK



# 1.2 Connector Location and Pin-Out

The figure below shows the KBOC\_BB1 with all connectors and headers labeled.

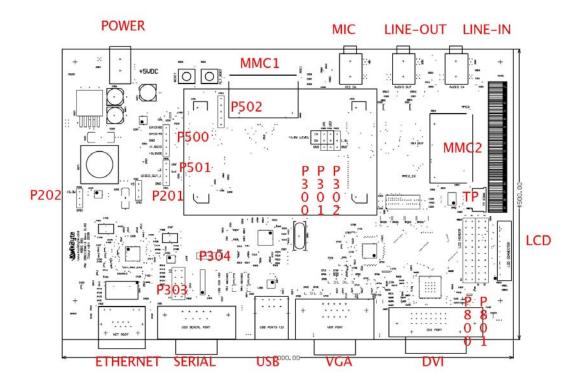



Figure 1-5: KBOC\_BB1 CONNECTOR/HEADER LABELS

# 1.2.1 Connector Description

The list below describes each card-edge connector.

#### POWER:

Input power supply. Standard 2.1mm barrel jack, center-positive supply must be supplied with +5VDC. Current rating depends on application. This positive supply signal is called "DC\_5V".

#### MMC1:

Standard SD/MMC/mini SD/ micro SD connector. Typically used for mass-storage support.

#### MIC:

Not normally populated. This is electret type microphone input.

#### LINE-OUT:

Audio output at line level – 3.5mm stereo jack.



#### LINE-IN:

Audio input at line level – 3.5mm stereo jack.

#### MMC2:

Not normally populated.

#### TP:

4-wire resistive touch screen surface mount 1mm interface connector. Only installed on LCD versions.

#### LCD:

40-pin surface mount 0.5mm pitch LCD FPC connector. Only installed on LCD versions.

#### DVI:

Standard DVI video output connector.

#### VGA:

Standard VGA video output connector.

#### USB:

Dual, USB 2.0 FS host ports.

#### SERIAL:

RS232 serial connector (DB9 female) for channel USART3. This channel is typically used as the console port, although it can be used for other purposes. Pin 2 (RX) is an input relative to the processor. Pin 3 (TX) is an output relative to the processor. Pin 5 is signal ground.

#### ETHERNET:

Standard 10/100Mbps Ethernet jack.

## 1.2.2 Header Pin-out

The tables below describe the header pin-out information. The headers are standard, 0.100" x 0.100" through-hole headers that are not populated. This makes soldering to the signals very easy.

| PIN | SIGNAL |
|-----|--------|
| 1   | DC_5V  |
| 2   | NC     |
| 3   | GND    |

Table 1-1: P201 Pin-out



| PIN | SIGNAL  |
|-----|---------|
| 1   | +3.3VDC |
| 2   | NC      |
| 3   | GND     |

Table 1-2: P202 Pin-out

| PIN | SIGNAL | OMAP35xx BALL |
|-----|--------|---------------|
| 1   | US1_TX | AA8           |
| 2   | US1_RX | Y8            |
| 3   | GND    |               |

Table 1-3: P300 Pin-out

| PIN | SIGNAL               | OMAP35xx BALL |
|-----|----------------------|---------------|
| 1   | US2_TX (MCBSP3_CLKX) | AF5           |
| 2   | US2_RX (MCBSP3_FSX)  | AE5           |
| 3   | GND                  |               |

Table 1-4: P301 Pin-out

| PIN | SIGNAL  |
|-----|---------|
| 1   | +3.3VDC |
| 2   | VIO_1V8 |
| 3   | GND     |

Table 1-5: P302 Pin-out

| PIN | SIGNAL      | OMAP35xx BALL     |
|-----|-------------|-------------------|
| 1   | NC          |                   |
| 2   | UART3_232RX | H20 (RS232-LEVEL) |
| 3   | UART3_232TX | H21 (RS232-LEVEL) |
| 4   | NC          |                   |
| 5   | GND         |                   |
| 6   | NC          |                   |
| 7   | NC          |                   |
| 8   | NC          |                   |
| 9   | NC          |                   |
| 10  | NC          |                   |

Table 1-6: P303 Pin-out

| PIN | SIGNAL      | OMAP35xx BALL    |
|-----|-------------|------------------|
| 1   | NC          |                  |
| 2   | GND         |                  |
| 3   | US3_3.3V_RX | H20 (3.3V-LEVEL) |
| 4   | US3_3.3V_TX | H21 (3.3V-LEVEL) |

**Table 1-7: P304 Pin-out** 



| PIN | SIGNAL       | OMAP35xx BALL |
|-----|--------------|---------------|
| 1   | +3.3VDC      |               |
| 2   | VIO_1V8      |               |
| 3   | GND          |               |
| 4   | LED1_GPIO149 | AA9           |
| 5   | LED1 GPIO150 | W8            |

Table 1-8: P500 Pin-out

| PIN | SIGNAL     | OMAP35xx BALL |
|-----|------------|---------------|
| 1   | GND        |               |
| 2   | VIDEO_OUT1 | Y28           |
| 3   | VIDEO_OUT2 | W28           |
| 4   | GND        |               |

Table 1-9: P501 Pin-out

| PIN | SIGNAL                | OMAP35xx BALL |
|-----|-----------------------|---------------|
| 1   | SPI3_SOMI (USB1_DAT1) | AG12          |
| 2   | SPI3_SIMO (USB1_DAT0) | AF11          |
| 3   | SPI3_CS0 (USB1_DAT2)  | AH12          |
| 4   | SPI3_CLK (USB1_DAT3)  | AH14          |
| 5   | GND                   |               |

**Table 1-10: P502 Pin-out** 

| PIN | SIGNAL | OMAP35xx BALL |
|-----|--------|---------------|
| 1   | DD0    | AG22*         |
| 2   | DD15   | AA27*         |
| 3   | DD14   | AA28*         |
| 4   | DD12   | AB28*         |
| 5   | DD11   | AD27*         |
| 6   | DD10   | AD28*         |
| 7   | DD23   | AC28*         |
| 8   | DD21   | J26*          |
| 9   | DD18   | H26*          |
| 10  | DD17   | H27*          |
| 11  | DD1    | AH22*         |
| 12  | DD2    | AG23*         |
| 13  | DD5    | AH24*         |
| 14  | DD13   | AB27*         |
| 15  | GND    |               |
| 16  | GND    |               |
| 17  | DD_CK  | D28*          |
| 18  | DD_EN  | E27*          |
| 19  | DD_HS  | D26*          |
| 20  | DD_VS  | D27*          |

**Table 1-11: P800 Pin-out** 

<sup>\*</sup> All display lines are buffered and driven at +3.3V level outputs.



| PIN | SIGNAL      | OMAP35xx BALL      |
|-----|-------------|--------------------|
| 1   | LCD_PWR_ENn | Y21* (MCBSP1_CLKR) |
| 2   | LCD_PUP     | V21* (MCBSP1_DX)   |
| 3   | +3.3VDC     |                    |
| 4   | +3.3VDC     |                    |
| 5   | DD9         | G26*               |
| 6   | DD8         | F27*               |
| 7   | DD20        | E28*               |
| 8   | DD19        | H25*               |
| 9   | DD16        | G25*               |
| 10  | DD22        | AC27*              |
| 11  | DD3         | AH23*              |
| 12  | DD4         | AG24*              |
| 13  | DD7         | F28*               |
| 14  | DD6         | E26*               |
| 15  | GND         |                    |
| 16  | GND         |                    |
| 17  | I2C3_SCL    | AF14 (DC_5V LEVEL) |
| 18  | DC_5V       |                    |
| 19  | I2C3_SDA    | AG14 (DC_5V LEVEL) |
| 20  | DC_5V       |                    |

**Table 1-12: P801 Pin-out** 

# 1.3 On-Board Signal Routing

The lists below describe signals used on-board.

# **Ethernet Chip Reset Signal:**

Active low reset, +3.3V signal.

ETH\_RESETn: GPIO13 (USB1\_CLK): AE10: Mode 4 0x25DA

# **USB Hub Reset Signal:**

Active low reset, +3.3V signal.

USB\_HUB\_RESETn = GPIO22 (USB1\_DIR) : AF9 : Mode 4 0x25EC

# **VGA Enable Signal:**

Active low reset, +3.3V signal.

VGA\_PUP = GPIO159 (MCBSP1\_DR) : U21 : Mode 4 0x2192

## **DVI Enable Signal:**

Active low reset, +3.3V signal.

 $DVI_PUP = GPIO170 : J25 : Mode 4 0x216C$ 

# **LCD Enable Signal:**

Buffered output driven at +3.3V level to header P801 pin 2. LCD\_PUP = GPIO158 (MCBSP1\_DX) : V21 : Mode 4 0x2190

# **LCD Power Enable Signal:**



Buffered output driven at +3.3V level to header P801 pin 1.

LCD\_PWR\_ENn = GPIO156 (MCBSP1\_CLKR) : Y21 : Mode 4 0x218C

# **Touch Screen Interface Signals:**

SPI1\_CLK: AB3: Mode 0 SPI1\_CS3: AB2: Mode 0 SPI1\_SIMO: AB4: Mode 0 SPI1\_SOMI: AA4: Mode 0

IRQ = GPIO161 (MCBSP1\_FSX) : K26 : Mode 4 0x2196

# **Monitor Detect Signals:**

Buffered bidirectional signals driven at DC\_5V level routed to header P801, DVI connector, and VGA connector.

I2C3\_SCL = AF14 : Mode 0 I2C3\_SDA = AG14 : Mode 0

# **Serial Channel 3 Signals:**

Buffered +3.3V signals wired to header P304 and serial level shift chip, then wired to connector J301 and header P303.

 $US3_TX = H21$ : Mode 0  $US3_RX = H20$ : Mode 0

