Practical Software Development for KB9202B

Purpose

NOTE:
The KB9202B is shipped with boot loader, Linux kernel, and file system installed. It is not necessary to
perform any of the operations listed, here, to use the board.

This document lists steps used to build a Linux-hosted development system for use in developing software
applications or kernel device drivers for the KB9202B. The path taken is not necessarily the only way to
go — several other approaches could be used.

There is no warranty of any kind supplied with this information. This document is simply a listing of
possible steps performed in configuring a Linux-host desktop for use in developing applications on the
KB9202B. First, the Operating System is installed - followed by cross compiler tool chain, file system
creation, and finally sample application execution.

The reader is strongly encouraged to visit each of the developer sites. The software demonstrated and used
here was developed by others and is currently open-source.

Notice that the tools directory is explicitly referenced in several sections. This directory can also be added
to the PATH in order to simplify the commands. Throughout this document, the MAC is set with
02:05:05:07:09:14. You must obtain and use a valid MAC. The value shown is for demonstration only.

MkBgte 1/18

www.kwikbyte.com

Practical Software Development for KB9202B

PUIIOSE ..t b bt e R R R R R R R Rt r R Rt n e 1
Operating SYStem INSTAHATIONc.ooiiiii et 3
Cross Compiler and Related ToOIS INSTAIIALIONociiiiiiiiieie e 3
HOSE SEVET CONTIGUIATION ...ttt et b e bbbt seesb et be st e neenne e 4
JFFS2 TOOIS INSTAHATION ...ttt ettt bbb 5
20T T To < OSSPSR 5
KEIMEL INSTAHTALION ... ettt b et b et b et et bbb e 6
FAMMONITOT EXECULION. ...ttt et b et bttt sttt bbb 6
BUSYBOX ULility CONSIIUCLIONovviieic ettt st sreenesreeneeneeneens 6
LIV (=] I O] TSy (od o] SRS 7
Mounting a USB Mass Storage Device (KEYTISK)cceiiireiiirieiienieesie e 7
MOoUNEING 8 SD/MMEC DEVICEoiueieiiiteieeieite ettt bbbttt bbbt bttt 8

Bo0ting from SD/MMEC DBVICEccueiuiiiitiiiieiieiee ettt ettt se et bbb neenee e neas 8
Restoring the Factory INSTAHIAtioN.oiiiiiiii e 9
Restoring the Factory Installation (KB9202C)ccociiiiiiiiiiiiie et e 15
F gl o1 F=I AN o o] [Tor= L [0 4 PSSR 17

Application using Math LIDIarycooviiiiiiiiece st 17

Application using CH++ and the STLccciiiiiieiecce et re e e 17
Appendix A: Fedora Core OS Installation OPtioNSccccveveriererirerin e 18

Table 1: Table of Contents

Kwik3yte

www.kwikbyte.com 2/18

Practical Software Development for KB9202B

Operating System Installation

1) Download FC4 (four ISO images) from one of the mirror sites listed at http://fedora.redhat.com/.
Burn each image to a CD — use the special “Burn Image” option of your CD burner (e.g., Nero).

2) Install using configuration specified in Appendix A: Fedora Core OS Installation Options.

3) Afterinstallation, log in and open terminal (Applications — System Tools — Terminal).

Cross Compiler and Related Tools Installation

The fastest, simplest, and most current method of building the uClibc libraries and associated tools is
buildroot. We strongly recommend running the script on the development system (see instructions below).
This freely-available utility downloads necessary updates and patches for the toolset and builds a sample
root file system (which will not be used, here). You can get more information about this great tool at
http://buildroot.uclibc.org/.

Notice that buildroot constructs the cross compiler toolchain, libraries (uClibc), utilities (BusyBox), and
root file system. Only the toolchain and libraries are used in this document, but you are encouraged to
explore the other packages.

A pre-built snapshot is available on the distribution CD. While we recommend running the script on the
development system, this may not always be possible. In this case, copy the snapshot from the CD:

1) Copy the tarball
/ # cp /media/cdrecorder/kb9202b/tools_source/buildroot.tar.gz /

2) Extract the tarball (this may take a long time)
/ # tar —zxvf buildroot.tar.gz

Alternatively, the following describe the steps used to run the buildroot script:

1) Download the current buildroot script using Subversion
/ # svn co svn://uclibc.org/trunk/buildroot

2) Set the configuration options
/ # cd buildroot
/buildroot # make

3) Set the following parameters:
Target Architecture > arm
Target Architecture Variant > arm920t
Toolchain Options -
Kernel Headers > 2.6.12
(enable) Build/install c++ compiler and libstdc++
(disable) Enable ccache support
(enable) Use software floating point by default
Exit and save changes

4) Build the package
/buildroot # make

5) When prompted “Use BX in function return (USE_BX) [Y/n/?]”, press “n”
followed by Enter.
6) Accept the remaining, default options. The next stage of the build procedure takes approximately
35 minutes on a 933 MHz desktop.
7) Inthe version tested, the build fails with the following error:
macro “index” requires 2 arguments, but only 1 given

8) Update /buildroot/toolcahin_build_arm_nofpu/gcc-3.4.2/1ibstdc++-v3/include/ext/rope
/buildroot # gedit toolchain_build_arm_nofpu/gcc-3.4.2/1ibstdc++-v3/include/ext/rope

Change the file as follows:

#include <ext/hash_fun.h>

www.kwikbyte.com Mkagte 3/18

Practical Software Development for KB9202B

#undef index

ifdef _ GC

9) Ldeate /buildroot/toolcahin_build_arm_nofpu/gcc-3.4.2/1ibstdc++-v3/include/ext/ropeimpl_h
/buildroot # gedit toolchain_build_arm_nofpu/gcc-3.4.2/1ibstdc++-v3/include/ext/ropeimpl_h

Change the file as follows:

#include <ext/numeric>
#undef index

namespace __gnu_cCxX

10) Continue with the build procedure
/buildroot # make

Host Sever Configuration

To utilize advantages of TFTP and NFS functionality, the host system must be configured as a server for
each of these protocols. This assumes the network is functional on the host machine. If the
/usr/local/arm directory does not exist, create it first.

To enable the NFS server, add a NFS share from Desktop->System Settings->Server
Settings->NFS. Add ashare directory for the target.
For example:

Directory: /usr/local/arm

Host(s): 192.160.1.79

Permissions: Read/Write

General Options: Sync write operations on request

User Access: Treat remote root user as local root

(192.160.1.79 is the IP address of the target)

Enable the services (tftp and nfs) to begin at system initialization in Desktop->System Settings-
>Servers->Services.

Because the default installation enables the firewall, external target access must be explicitly granted on
each system initialization (this can be added to the init script):

iptables —I INPUT —s 192.160.1.0/24 —dst 192.160.1.0/24 —j ACCEPT

If the rule should be applied on each boot, the rule can be saved with the following command:
/sbin/service iptables save

After rebooting the system, verify the servers are running (in a terminal window):

> netstat —a | grep nfs
tcp 0 0 *:nfs *:o* LISTEN
udp 0 0 *:nfs *:*

> netstat —a | grep tftp

Kwik3yte

www.kwikbyte.com 4/18

Practical Software Development for KB9202B

udp 0 0 *:tftp *:o*

If tftp is not found or the server is not working, the service can be run in standalone mode to help determine

the source of the problem:
> in.tftpd -1 —s /tftpboot

JFFS2 Tools Installation

This section is not required, but provided as a reference in case you want to build another JFFS2 image.

The following describe the steps required to construct a JFFS2 file system from an existing file tree and
build the target utility to erase and program MTD devices:
1) Check-out the latest mtd utilities (password = anoncvs)
/usr/local/arm # cvs -d :pserver:anoncvs@cvs. infradead.org:/home/cvs login
/usr/local/arm # cvs -d :pserver:anoncvs@cvs. infradead.org:/home/cvs co mtd
/usr/local/arm # cvs -d :pserver:anoncvs@cvs. infradead.org:/home/cvs logout
2) Build utilities
/usr/local/arm # cd mtd/util
/usr/local/arm/mtd/util # make
3) Copy the host-built utilities for later use
/usr/local/arm/mtd/util # cp mkfs.jffs2 host.mkfs.jFfs2
4) Create full file system, if you have one (e.g., at Zusr/local/arm/target_fs)
/usr/local/arm/mtd/util # _/host.mkfs.jffs2 —-pad=0x4000 —eraseblock=0x4000 \
—1 —root=../._/target_fs -o full_fs.bin
5) (Optional) Clean the directory

/usr/local/arm/mtd/util # make clean

6) (Optional) Rebuild the tools for use on the target
/usr/local/arm/mtd/util # make \
CROSS=/bui ldroot/build_arm_nofpu/staging_dir/bin/arm-linux-
7) (Optional) The build fails at mkfs.jffs2.c, but individual utilities can be built as required. This step

is executed to build the flash_erase(all) utility for the target.

Step 4 is listed for reference and can be executed after the file system has been constructed (see File System
Construction).

Boot Loader

The KB9202B utilizes a three stage boot loader: processor internal boot loader, EEPROM configuration
boot loader, and NOR FLASH u-boot (at 0x10f80000). This approach leverages a standard boot loader
interface (u-boot) with a small penalty in boot time. If boot time is a critical parameter, other methods are
available to greatly reduce time to boot the kernel (fast boot time is only a few seconds to shell).

The following describe steps required to build the u-boot boot loader:

1) Download u-boot (Press Enter when prompted for password)
/usr/local/arm # cvs \
—d:pserver:anonymous@u-boot.cvs.sourceforge.net:/cvsroot/u-boot login
/usr/local/arm # cvs —z3 \
—d:pserver:anonymous@u-boot.cvs.sourceforge.net:/cvsroot/u-boot co —P u-boot
2) Build
/usr/local/arm # cd u-boot
/usr/local/arm/u-boot # make \
CROSS_COMPILE=/buildroot/build_arm_nofpu/staging_dir/bin/arm-linux- kb9202_config
/usr/local/arm/u-boot # make \
CROSS_COMPILE=/buildroot/build_arm_nofpu/staging_dir/bin/arm-1inux-
3) Copy the image in preparation for download
/usr/local/arm/u-boot # cp u-boot.bin /tftpboot/
4) Copy the mkimage utility to be used in the next section
/usr/local/arm/u-boot # cp tools/mkimage Zusr/local/sbin/

5) Copy the download utility
/usr/local/arm/u-boot # cd ..

Kwik3yte

www.kwikbyte.com 5/18

Practical Software Development for KB9202B

/usr/local/arm # mkdir host_xmodem
/usr/local/arm # cp /media/cdrecorder/kb9202b/host_xmodem/* host_xmodem
/usr/local/arm # cp host_xmodem/download /usr/local/sbin/

Kernel Installation

The following describe steps required to build the Linux kernel (2.6.17):

1) Make a directory for the kernel source
/ # mkdir —p /usr/src/arm
/ # cd /usr/src/arm

2) Copy the source and patches (from download or distribution CD)
/usr/src/arm # cp /media/cdrecorder/kb9202b/tools_source/2.6.17-at91._patch.gz .
/usr/src/arm # cp /media/cdrecorder/kb9202b/tools_source/linux-2.6.17.tar.bz2 .
/usr/src/arm # cp /media/cdrecorder/kb9202b/tools_source/kb9202_nand_patch .

3) Extract the kernel source
/usr/src/arm # tar —jxvf linux-2.6.17.tar._bz2
/usr/src/arm # rm —F linux-2.6.17.tar.bz2

4) Patch the kernel for AT91RM9200
/usr/src/arm # gunzip 2.6.17-at91.patch.gz
/usr/src/arm # patch —pl —d linux-2.6.17 < 2.6.17-at91.patch
/usr/src/arm # patch —pl —d linux-2.6.17 < kb9202_nand_patch
/usr/src/arm # rm —F kb9202_nand_patch
/usr/src/arm # rm —fF 2.6.17-at91.patch
5) Itis strongly recommended to create a copy of the kernel source
/usr/src/arm # mkdir linux-2.6.17.base
Jusr/src/arm # cp —dR linux-2.6.17/* linux-2.6.17.base/
6) Create a link to the directory
/usr/src/arm # In —s linux-2.6.17 linux
7) Copy the default kernel configuration file into the source directory
/usr/src/arm # cd linux
/usr/src/arm/linux # cp /media/cdrecorder/kb9202b/config_Ffiles/kernel .config
8) Build the kernel image
/usr/src/arm/linux # make ARCH=arm \
CROSS_COMPILE=/buildroot/build_arm_nofpu/staging_dir/bin/arm-linux- Image
9) Create the u-boot compatible image using one of the following (trading speed for size)

a. Larger size, but faster (default)
/usr/src/arm/linux # mkimage —n “KB9202B 2.6.17 kernel” \
—A arm —O linux —T kernel —C none —a 20008000 \
—e 20008000 —d arch/arm/boot/Image /tftpboot/ulmage

b. Smaller size, but slower (approximately twice as long)
/usr/src/arm/linux #/buildroot/build_arm_nofpu/staging_dir/bin/arm-linux-objcopy \
—0 binary —R _note —R _comment -S vmlinux linux.bin
/usr/src/arm/linux # gzip -9 linux.bin
/usr/src/arm/linux # mkimage —n “KB9202B 2.6.17 kernel” \
—A arm —O linux —T kernel —C gzip —a 20008000 \
—e 20008000 —d linux.bin.gz /tftpbot/ulmage

ramMonitor Execution

A set of utility functions is provided in the ‘ramMonitor’ program. These utilities are used to erase and
program EEPROM, NOR FLASH, and NAND FLASH. The program is installed at 0x10f00000 and can
be executed from the bootloader (u-boot) with the command “go 10f00000”. See KB9202 User’s Guide for
more information on this utility. With the conversion to u-boot, ramMonitor is only required for crash-
recovery (if one of the boot loaders has been corrupted) or to reset the factory default installation.

BusyBox Utility Construction

The following describes the step taken to build the BusyBox utility functions:
1) Download busybox-1.1.2-tar.bz2 from http://busybox.net/downloads/ and place in
/usr/local/arm

Kwik3yte

www.kwikbyte.com 6/18

Practical Software Development for KB9202B

2) Extract
/usr/local/arm # tar —jxvf busybox-1.1.2_tar.bz2

3) The file busybox-1.1.2.tar.bz2 is no longer required and can be deleted.

4) Use the predetermined configuration from distribution CD or download
/usr/local/arm # cd busybox-1.1.2
/usr/local/arm/busybox-1.1.2 # cp \
/media/cdrecorder/kb9202b/config_files/bb.txt .config

5) Prepare for compilation
/usr/local/arm/busybox-1.1.2 # make \
CROSS=/bui ldroot/build_arm_nofpu/staging_dir/bin/arm-linux- menuconfig

6) Change as desired, or just leave as is (default)
7) Exit and save changes
8) Compile
/usr/local/arm/busybox-1.1.2 # make CROSS=/usr/local/arm/bin/arm-linux-

9) Install to Zusr/local/arm/busybox-1.1.2/ install
/usr/local/arm/busybox-1.1.2 # make CROSS=/usr/local/arm/bin/arm-linux- install

10) Set the BusyBox executable file with setuid root flags
/usr/local/arm/busybox-1.1.2 # chmod 4755 _install/bin/busybox
/usr/local/arm/busybox-1.1.2 # cd ..

The default configuration file uses static linkage. This increases the size of the BusyBox executable file,
but removes the dependency on libraries installed on the target.

File System Construction

The following describe the steps taken in building the default file system:

1) Copy and extract the hollow target file system tree from distribution or download
/usr/local/arm # cp /media/cdrecorder/kb9202b/factory_images/target_fs.tar.gz .
/usr/local/arm # tar —zxvf target_fs.tar.gz
/usr/local/arm # rm —F target _fs.tar.gz .

2) Copy utilities
/usr/local/arm # cp —Rd busybox-1.1.2/_install/* target_fs/
/usr/local/arm # cp /buildroot/build_arm_nofpu/root/sbin/ldconfig target_fs/sbin

3) Edit the network configuration file and select the target IP configuration mode (static or DHCP)

following the instructions in the file
/usr/local/arm # gedit target fs/etc/network/interfaces

4) Copy shared libraries to file system
/usr/local/arm # cp —d /buildroot/build_arm_nofpu/root/lib/* target fs/lib

5) Change ownership of the file tree
/usr/local/arm # chown —R 0:0 target_fs/*

This file system tree (/usr/local/arm/target_fs) can now be used to create the JFFS2 image (see JFFS2
Tools Installation).

Mounting a USB Mass Storage Device (keydisk)

This section is optional, but useful for increasing the storage on the KB9202B.

By default, the power to the USB host port is disabled via a jumper. In order to utilize standard keydisks,
this jumper must be moved.

Notice, several warning messages regarding the second USB host port are emitted. This is normal as the
second host port is inaccessible on this implementation of the processor.

<moved jumper JP1 to power the USB host port>
<inserted the USB keydisk now>

[root@KB9202B:/]
[root@KB9202B:/] usb 1-1: USB disconnect, address 11

www.kwikbyte.com Mkagte 7/18

Practical Software Development for KB9202B

usb 1-1: new full speed USB device using at91_ohci and address 12
usb 1-1: new full speed USB device using at91 _ohci and address 13
usb 1-1: configuration #1 chosen from 1 choice
scsi2 : SCSI emulation for USB Mass Storage devices
Vendor: SanDisk Model : Cruzer Micro Rev: 0.3
Type: Direct-Access ANSI SCSI revision: 02
SCSI1 device sda: 501759 512-byte hdwr sectors (257 MB)
sda: Write Protect is off
sda: assuming drive cache: write through
SCSI1 device sda: 501759 512-byte hdwr sectors (257 MB)
sda: Write Protect is off
sda: assuming drive cache: write through
sda:<7>usb-storage: queuecommand called
sdal
sd 2:0:0:0: Attached scsi removable disk sda
sd 2:0:0:0: Attached scsi generic sg0 type 0O

[root@KB9202B:/] mount -t usbfs none /proc/bus/usb
[root@KB9202B:/] mount /dev/sdal /mnt/usb
[root@KB9202B:/] df -h

Filesystem Size Used Available Use% Mounted on
/dev/mtdblockO 32.0M 2.7M 29.3M 8% /
/dev/sdal 243.7M 114.1M 129.6M 47% /mnt/usb

[root@KB9202B:/] mount

/dev/root on / type jffs2 (rw)

proc on /proc type proc (rw)

none on /proc/bus/usb type usbfs (rw)

/dev/sdal on /mnt/usb type msdos (rw,fmask=0022,dmask=0022,codepage=cp437)
[root@KB9202B: /]

Mounting a SD/MMC Device

This section is optional, but useful for increasing the storage on the KB9202B.

Due to an erratum against the Atmel AT91RM9200 processor, stronger pull-up resistors may be required
(R45 and R50). This is somewhat dependent on the system installation and the specific SD/MMC.
KB9202B boards with date code F10122006-1.30 and later have the stronger pull-ups installed (22.1k),
whereas previous versions utilize 100k.

Inserting a SD/MMC will cause status messages to be displayed on the target. The card file system type
can be set with standard tools (e.g. mkfs.ext2, mkfs.ext3, etc.).

[root@KB9202B:/] << SD/MMC inserted now >>
[root@KB9202B:/] mmcblkO: mmc0:0001 SDM128 125440KiB
mmcblkO: pl

[root@KB9202B:/] mount -t ext2 /dev/mmcblkOpl /mnt/mmc

EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
[root@KB9202B:/] mount

/dev/root on / type jffs2 (rw)

proc on /proc type proc (rw)

/dev/mmcblkOpl on /mnt/mmc type ext2 (rw)

[root@KB9202B:/] df -h

Filesystem Size Used Available Use% Mounted on
/dev/mtdblockO 32.0M 2.7M 29.3M 8% /
/dev/mmcblkOpl 118.5M 2.6M 109.7M 2% /mnt/mmc

[root@KB9202B: /]

Booting from SD/MMC Device

To boot from SD/MMC root file system, create the file system (e.g., ext2) on the card and copy the
/usr/local/arm/target_fs directory onto the card. Then, change the u-boot boot arguments:

setenv bootargs console=ttyS0,115200 noinitrd root=/dev/mmcblkOpl rootfstype=ext2
KwikByte

www.kwikbyte.com 8/18

Practical Software Development for KB9202B

To make this change persistent, save the environment (“saveenv”) in u-boot.

Press the reset switch and watch it boot from the SD/MMC!

Restoring the Factory Installation

These instructions assume the target file system has been created according to the steps provided, above (at
/usr/local/arm/target_fs). For the tftp transfers listed, the host server must be enabled and the factory
image files located at /7tftpboot. The NFS server must be enabled and configured as stated, above. The
process of exiting/entering the terminal is only required for terminal programs which do not support x-
modem downloads: e.g., minicom. For other terminals, it is possible to perform the download within the
terminal itself. Certain operations take some time - please be patient.

Erasing bad blocks on NAND devices can lead to unpredictable results — which the JFFS2 file system can
repair. The entire device is erased in the following section; however, it is strongly recommended to use the
flash_eraseall command previously generated.

Summary of operations:

1) Open terminal to target (minicom, HyperTerminal, etc.).

2) Short EEPROM jumper JP3 pins 1-2.

3) Press and release the reset button.

4) Verify ‘C’ characters on terminal.

5) Exit terminal.

6) Download stagel.bin using x-modem.

7) Download ramMonitor.bin using x-modem.

8) Open terminal to target.

9) Erase flash (“f e”).

10) Erase NAND (“nand e”).

11) Determine suitable location for download buffer (“x””). Use 0x2000d000.

12) Set the target MAC (“m 2557 9 14”).

13) Set the target IP (“ip 192 160 1 79”).

14) Set the server IP (“server_ip 192 160 1 204”).

15) TFTP download EEPROM boot loader. (“tftp 0x2000d000 bootloader.bin™).

16) Verify the TFTP transfer image size (“tftp”).

17) Program the EEPROM boot loader (“eewrite 0 2000d000 <image size>").

18) TFTP download the flash boot loader (“tftp 2000d000 u-boot.bin™).

19) Verify the TFTP transfer image size (“tftp”).

20) Program the flash boot loader (“f p 10f80000 2000d000 <image size>").

21) TFTP download ramMonitor (“tftp 2000d000 ramMonitor.bin™).

22) Verify the TFTP transfer image size (“tftp”).

23) Program ramMonitor (“f p 10f00000 2000d000 <image size>").

24) TFTP download the kernel image (“tftp 20000000 ulmage”).

25) Verify the TFTP transfer image size (“tftp”).

26) Program the kernel (“f p 20000000 2000d000 <image size>").

27) Press the reset switch.

28) Press a key when u-boot begins the countdown.

29) Set the MAC (“setenv ethaddr 2.5.5.7.9.14™).

30) Set the IP (“setenv ipaddr 192 160 1 797).

31) Save the environment (“saveenv”).

32) Ping the host (“ping 192.160.1.204™).

33) Adjust the boot arguments (“setenv bootargs console=ttyS0,115200 root=/dev/nfs
nfsroot=192.160.1.204:/usr/local/arm/taget_fs ip=192.160.1.79”).

34) Boot the kernel image (“bootm 10000000”).

Kwik3yte

www.kwikbyte.com 9/18

Practical Software Development for KB9202B

35) Login as ‘root’, when prompted.

36) TFTP download the file system image (“tftp —I full_fs.bin —r full_fs.bin 192.160.1.204").
37) Write the image to NAND (“cp full_fs.bin /dev/mtdQ”).

38) Reboot (“reboot”).

Detailed listing of operations:

~ #cd /usr/local/arm
/usr/local/arm #download /tftpboot/stagel.bin

From: WAIT_FOR_START -> SEND_BLOCK

From: SEND_BLOCK -> SEND_EOT
Sending EOT

Transfer complete

From: SEND_EOT -> FINISHED

Transmission complete: size = 7296 (Ox 1C80)
/usr/local/arm #download /tftpboot/ramMonitor.bin

From: WAIT_FOR_START -> SEND_BLOCK

From: SEND_BLOCK -> SEND_EOT

éending EOT
Transfer complete
From: SEND_EOT -> FINISHED

Transmission complete: size = 40832 (0Ox 9F80)
/usr/local/arm #minicom

Welcome to minicom 2.00.0

OPTIONS: History Buffer, F-key Macros, Search History Buffer, 118n
Compiled on Mar 7 2005, 10:29:09.

Press CTRL-A Z for help on special keys

>F e

Erasing block: 0x10000000
(cut)

Erasing block: 0x10FA0000

Erasing block: 0x10FCO000

Erasing block: Ox10FEOO0O

> nand e

Erasing block offset: 0x00000000... NAND: ready
PASS

(cut)

Erasing block offset: Ox01FF4000... NAND: ready
PASS

Erasing block offset: OxO1FF8000... NAND: ready
PASS

Erasing block offset: Ox01FFCO00... NAND: ready
PASS

>X
Local buffer available of size: 4194304 bytes (4MB) at address: 0x2000C6D8

Last x-modem transfer: FAIL (or not initiated)

Kwik3yte

www.kwikbyte.com

10/18

Practical Software Development for KB9202B

>n 25579 14
>ip 192 160 1 79
>server_ip 192 160 1 204

>tftp 2000d000 bootloader.bin
Starting tftp download of file: bootloader.bin at: 0x2000D000

>tftp
Starting tftp download of file: at: 0x00000000

-- Last tftp transfer info --
address: 0x2000D000
size: 0x00000748

>eewrite 0 2000d000 760

>tftp 2000d000 u-boot.bin
Starting tftp download of file: u-boot.bin at: 0x2000D000

>tftp
Starting tftp download of file: at: 0x00000000

-- Last tftp transfer info --
address: 0x2000D000
size: 0x0001C31C

>f p 1080000 2000d000 1c3ilc

>tftp 2000d000 ramMonitor.bin
Starting tftp download of file: ramMonitor.bin at: 0x2000D000

>tftp
Starting tftp download of file: at: 0x00000000

-- Last tftp transfer info --
address: 0x2000D000
size: 0x00009F68

>f p 10F00000 2000d000 a000

>tftp 2000d000 ulmage
Starting tftp download of file: ulmage at: 0x2000D000

>tftp
Starting tftp download of file: at: 0x00000000

-- Last tftp transfer info --
address: 0x2000D000
size: 0x00263D10

>f p 10000000 2000d000 263d10

Kwik3yte

www.kwikbyte.com 11/18

Practical Software Development for KB9202B

>echo

"User action = Press reset switch now on KB9202B"

KB9202B (www . kwikbyte.com) v2.5

U-Boot 1.1.4 (Oct 3 2006 - 13:50:59)

DRAM: 64 MB

Flash: 16 MB

*** Warning - bad CRC, using default environment
In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: O

U-Boot> echo "User action = Press a key to prevent continuation of u-boot"
U-Boot> setenv ethaddr 2.5.5.7.9.14

U-Boot> setenv ipaddr 192.160.1.79

U-Boot> saveenv

Saving Environment to EEPROM...

U-Boot> ping 192.160.1.204

host 192.160.1.204 is alive

U-Boot> setenv bootargs console=ttyS0,115200 root=/dev/nfs
nfsroot=192.160.1.204:/usr/local/arm/target_fs ip=192.160.1.79
U-Boot> bootm 10000000

Booting image at 10000000 ...
Image Name: KB9202B 2.6.17 kernel
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2505936 Bytes = 2.4 MB
Load Address: 20008000
Entry Point: 20008000
Verifying Checksum ... OK

OK

Starting kernel

Linux version 2.6.17 (root@dev.kwikbyte.com) (gcc version 3.4.2) #12 Wed Oct 4
14:01:34 MST 2006
CPU: ARM920Tid(wb) [41129200] revision O (ARMv4T)

Mach

ine:

KB920x

Memory policy: ECC disabled, Data cache writeback

Cloc

CPUO:
CPUO:
CPUO:

ks:
D
|
D

Built 1
Kernel command line: console=ttyS0,115200 root=/dev/nfs
nfsroot=192.160.1.204:/usr/local/arm/target_fs ip=192.160.1.79
AT91: 96 gpio irgs in 3 banks

PID hash table entries: 512 (order: 9, 2048 bytes)

cut

CPU 180 MHz, master 60 MHz, main 10.000 MHz

VIVT write-back cache

cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
zonelists

IP-Config: Complete:

Look
Look
usb
usb
usb
usb
usb
VFS:

www.kwikbyte.com

device=eth0, addr=192.160.1.79, mask=255.255.255.0, gw=255.255.255.255,

host=192.160.1.79, domain=, nis-domain=(none),
bootserver=255.255_255.255, rootserver=192.160.1.204, rootpath=

ing
ing

1-2:

up port of RPC 100003/2 on 192.160.1.204

up port of RPC 100005/1 on 192.160.1.204

device descriptor read/64, error -110

new low speed USB device using at91_ohci and address 4
device not accepting address 4, error -110

new low speed USB device using at91_ohci and address 5
device not accepting address 5, error -110

Mounted root (nfs filesystem).

Kwik3yte

12/18

Practical Software Development for KB9202B

Freeing init memory: 96K
init started: BusyBox v1.1.2 (2006.10.03-22:35+0000) multi-call binary

KB9202B login: root
Jan 1 00:01:35 login[711]: root login on ~ttySO*

BusyBox v1.1.2 (2006.10.03-22:35+0000) Built-in shell (ash)
Enter “"help® for a list of built-in commands.

[root@KB9202B:~]

[root@KB9202B:~] cd /

[root@KB9202B:/] ping 192.160.1.204

PING 192.160.1.204 (192.160.1.204): 56 data bytes

84 bytes from 192.160.1.204: icmp_seq=0 ttl=64 time=0.7 ms
84 bytes from 192.160.1.204: icmp_seg=1 ttl=64 time=0.5 ms

---192.160.1.204 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.5/0.6/0.7 ms

[root@kB9202B:/] tftp -1 full_fs_bin -r full_fs.bin -g 192.160.1.204
[root@KB9202B:/] cp full_fs.bin /dev/mtdO
[root@KB9202B:/] sync

[root@KB9202B:/] rm -f full_fs_bin

[root@KB9202B:/] reboot

The system is going down NOW 1I!

Sending SIGTERM to all processes.

Please stand by while rebooting the system.

Restarting system.

KB9202B (www . kwikbyte.com) v2.5

U-Boot 1.1.4 (Oct 3 2006 - 13:50:59)

DRAM: 64 MB
Flash: 16 MB
In: serial
Out: serial
Err: serial

Hit any key to stop autoboot: O
Booting image at 10000000 ...
Image Name: KB9202B 2.6.17 kernel
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2505936 Bytes = 2.4 MB
Load Address: 20008000
Entry Point: 20008000
Verifying Checksum ... OK
OK

Starting kernel

Linux version 2.6.17 (root@dev.kwikbyte._.com) (gcc version 3.4.2) #12 Wed Oct 4
14:01:34 MST 2006

CPU: ARM920Tid(wb) [41129200] revision 0 (ARMv4T)

Machine: KB920x

Memory policy: ECC disabled, Data cache writeback

Clocks: CPU 180 MHz, master 60 MHz, main 10.000 MHz

CPUO: D VIVT write-back cache

CPUO: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

CPUO: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

Built 1 zonelists

Kwik3yte

www.kwikbyte.com 13/18

Kernel command line: console=ttyS0,115200 noinitrd root=/dev/mtdblockO

Practical Software Development for KB9202B

rootfstype=jffs2 mem=64M
AT91: 96 gpio irgs in 3 banks
PID hash table entries: 512 (order: 9, 2048 bytes)

cut

éiﬁo: Link now 100-FullDuplex

ethO: AT91 ethernet at OxfefbcO00 int=24 100-FullDuplex (02:05:05:07:09:14)

ethO: Intel LXT971A PHY

NAND device: Manufacturer ID: 0x20, Chip ID: 0x75 (ST Micro NAND 32MiB 3,3V 8-bit)
Scanning device for bad blocks

Creating 1 MTD partitions on "NAND 32MiB 3,3V 8-bit":
0x00000000-0x02000000 :
at9l_ohci at9l_ohci:
at9l_ohci at9l_ohci:
at9l_ohci at91_ohci:

irq 23,

"nand_fs"
AT91 OHCI

new USB bus registered, assigned bus number 1
io mem 0x00300000

usb usbl: configuration #1 chosen from 1 choice
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 2 ports detected

Initializing USB Mass Storage driver...
usbcore: registered new driver usb-storage
USB Mass Storage support registered.

mice: PS/2 mouse device common for all mice

MMC: 4 wire bus mode not supported by this driver - using 1 wire

TCP bic registered
NET: Registered protocol family 1
NET: Registered protocol family 17
VFS: Mounted root (jffs2 filesystem).

Freeing
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:
usb 1-2:

init started:

init memory: 96K

new low speed USB
device descriptor
device descriptor
new low speed USB
device descriptor
device descriptor
new low speed USB

KB9202B login: root

Jan

1 00:00:27 login[712]: root login

device using at91_ohci and

read/64, error -110
read/64, error -110

device using at91_ohci and

read/64, error -110
read/64, error -110

device using at91_ohci and
device not accepting address 4, error -110
new low speed USB device using at91 ohci and
BusyBox v1.1.2 (2006.10.03-22:35+0000)
usb 1-2: device not accepting address 5, error -110

on ~ttySoO-

address 2

address 3

address 4

address 5

multi-call binary

BusyBox v1.1.2 (2006.10.03-22:35+0000) Built-in shell (ash)
Enter "help® for a list of built-in commands.

[root@KB9202B:~]
[root@KB9202B:~] df -h
Filesystem

/dev/mtdblock0

[root@KB9202B:~] mount
/dev/root on / type jffs2 (rw)
proc on /proc type proc (rw)

[root@KB9202B:~]

www.kwikbyte.com

Size
32.0M 2.2M

Kwik3yte

29.8M

Used Available Use% Mounted on

™ /

14/18

Practical Software Development for KB9202B

Restoring the Factory Installation (KB9202C)

CRASH RECOVERY FOR KB9202C

NOTE: If your system is corrupted and has partial boot information, you can skip the boot data by
shorting JP8 top two pins and press reset button. Once you see 'C' characters, stop shorting the
pins and follow this procedure.

NOTE: The MAC addresses shown in this procedure are used for reference only. Do not use these MAC
addresses in normal operation!

Symptom: output shows 'C' repeatedly.

Download stagel.bin using x-modem over serial port from
ftp://kwikbyte.com/KB9202B/factory _images/

After the download completes successfully, you will see more 'C' characters.

Download ramMonitor.bin using x-modem over serial port from
ftp://kwikbyte.com/KB9202C/images/

After the download completes successfully, you will get a prompt ">'
Enter '?' followed by Enter for a help list of commands.

Initiate another x-modem download with the following command:
x 23f00000

Download factory_ubootc.bin using x-modem over serial port from
ftp://kwikbyte.com/KB9202C/images/

Program SPI flash with U-Boot using the following command
spi_write 4200 23f00000 27e00

This command takes about three minutes to complete.

Initiate another x-modem download with the following command
x 20010000

Download factory _copyLoad.bin using x-modem over serial port from
ftp://kwikbyte.com/KB9202C/images/

Program SPI flash with copy loader using the following command:
spi_write 0 20010000 1500

This command takes about 20 seconds to complete.
Now press the reset button to reboot the board.
Be sure to stop the autoboot sequence as we may need to update the environment.

Clear any existing environment in U-Boot with the following command:
cp.b 22000000 c0002100 2000

Kwik3yte

www.kwikbyte.com 15/18

Practical Software Development for KB9202B

Now reset U-Boot with reset button or “reset" command.
Stop autobootm sequence and notice the warning stating:

*** Warning - bad CRC, using default environment

This is expected.

Now, set the default environment with the following commands:

setenv kernel-size 31¢8d0

setenv bootcmd cp.b c0042000 23000000 31¢8d0\; bootm 23000000

setenv bootargs console=ttyS0,115200 root=/dev/mtdblockO rootfstype=yaffs2 mem=64M

Now, save the environment with "saveenv".
Reset U-Boot with reset button or "reset” command and notice the following is NOT displayed:

*** \Warning - bad CRC, using default environment
Now, we will restore the factory kernel:

Set the local MAC: setenv ethaddr 00:1e:5f:03:3f:ff
Set the local IP: setenv ipaddr 192.150.1.79
Set the server IP: setenv serverip 192.150.1.211

Obtain the factory_ulmage file from
ftp://kwikbyte.com/KB9202C/images/
and place in tftp download directory on TFTP host server

Transfer the kernel image to the board RAM with the following command:
tftp 23000000 factory _ulmage

Program the kernel in SPI flash with the following command:
cp.b 23000000 c0042000 ${filesize}

Obtain the kb92_rec_fs.tar.gz file from

ftp://kwikbyte.com/KB9202C/updates/

Unzip and place in tftp download directory on TFTP host server:
for example: tar -zxvf kb92_rec_fs.tar.gz

Transfer the recovery initrd image to the board RAM with the command:
tftp 21400000 initrd.gz.recover92

Set temporary boot arguments:
setenv bootargs console=ttyS0,115200 root=/dev/ram rw initrd=0x21400000,2171156 mem=64M

Boot the kernel:
boot

Login at the prompt with "root"

Erase the NAND with the following:
flash_eraseall /dev/mtd0

Mount the NAND with the following:
mount -t yaffs2 /dev/mtdblockO /mnt/nand

Kwik3yte

www.kwikbyte.com 16/18

Practical Software Development for KB9202B

cd /tmp

Set the local IP in Linux:
ifconfig eth0 192.150.1.79

Obtain the fs_92_image.tar file from
ftp://kwikbyte.com/KB9202C/images/
and place in tftp download directory on TFTP host server

Transfer the file system image to the board:
tftp -g -r fs_92_image.tar 192.150.1.203

Untar the file system:
cd /mnt/nand
tar -xvf /tmp/fs_92_image.tar

Reboot the system:
reboot

Sample Applications

The following sample applications are developed on the host. Once the application is built, the executable
can be copied to the target file system for stand-alone operation. Each application directory includes a
README file with a brief description and instructions. The app can be built in static or dynamic
configuration. In the static configuration, the shared libraries are not required to exist on the target. This
saves space on the target at the expense of increased executable file size. On first powering the board (only
required once), execute ‘ldconfig’ to resolve shared library mappings.

These examples assume the NFS server is enabled and active.

1) Mount the NFS-hosted drive on the target.
[root@KB9202B:/] mount —t nfs —o nolock 192.160.1.204:/usr/local/arm/target_fs \
/mnt/nfs

2) Build the application (on the host) using ‘make’ command within the corresponding directory.
/usr/local/arm/target_fs/sampleApps/math/shared # make

3) Execute the application (on the target).
[root@KB9202B: /mnt/nfs/sampleApps/math/shared/] ./hello.out

Application using Math Library

See target file system directory sampleApps/math.

Application using C++ and the STL

See target file system directory sampleApps/cpp.

Kwik3yte

www.kwikbyte.com 17/18

Practical Software Development for KB9202B

Appendix A: Fedora Core OS Installation Options

First, ensure valuable data is copied or backed-up before installing the new OS.

Language Selection = English
Keyboard Configuration = U.S. English
Upgrade Examine (only is previous installation exists) = selected “Install Fedora Core”
Installation Type = Custom
Disk Partitioning Setup = Manually partition with Disk Druid
Disk Setup =
1)Deleted existing partitions
2)Added 20GB partition (ext3) for /> mount point
3)Added 20GB partition (ext3) for ‘/usr/ mount point
4)Added 3GB partition (swap)
Network Configuration = Enter values according to your network
Firewall Configuration = Enable firewall
Time Zone Selection = Set according to your time zone
Set Root Password = Enter a password — DO NOT FORGET THIS PASSWORD
Package Group Selection (items listed are differences from default selection):
Many of the following options are enabled due to personal preference.
1)Enable KDE and kdeadmin in the submenu
2)Enable Editors and Emacs in the submenu
3)Enable Engineering and Scientific
4)Enable xpdf in Office/Productivity
5)Enable Server Configuration Tools
6)Enable Legacy Network Server and tftp-server in the submenu
7)Enable Development Tools and ddd, expect, and subversion in submenu
8)Enable KDE Software Development
9)Enable Legacy Software Development
10) Enable Eclipse
11) Enable Administration Tools
12) Enable System Tools and festival, iptraf, and net-snmp-utils in submenu

Total size of selected packages is less than 3.3GB.
About to Install = click ‘Next’, verify you have the required CDs, and wait for the installation to complete
(about 40 minutes on 900 MHz desktop)

Kwik3yte

www.kwikbyte.com 18/18

